Near-optimal Binary Compressed Sensing Matrix

نویسندگان

  • Weizhi Lu
  • Weiyu Li
  • Kidiyo Kpalma
  • Joseph Ronsin
چکیده

Compressed sensing is a promising technique that attempts to faithfully recover sparse signal with as few linear and nonadaptive measurements as possible. Its performance is largely determined by the characteristic of sensing matrix. Recently several zero-one binary sensing matrices have been deterministically constructed for their relative low complexity and competitive performance. Considering the implementation complexity, it is of great practical interest if one could further improve the sparsity of binary matrix without performance loss. Based on the study of restricted isometry property (RIP), this paper proposes the near-optimal binary sensing matrix, which guarantees nearly the best performance with as sparse distribution as possible. The proposed near-optimal binary matrix can be deterministically constructed with progressive edge-growth (PEG) algorithm. Its performance is confirmed with extensive simulations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compressed Sensing with Sparse Binary Matrices: Instance Optimal Error Guarantees in Near-Optimal Time

A compressed sensing method consists of a rectangular measurement matrix, M ∈ R m×N with m ≪ N , together with an associated recovery algorithm, A : R → R . Compressed sensing methods aim to construct a high quality approximation to any given input vector x ∈ R using onlyMx ∈ R as input. In particular, we focus herein on instance optimal nonlinear approximation error bounds for M and A of the f...

متن کامل

Efficiently Decodable Compressed Sensing by List-Recoverable Codes and Recursion

We present two recursive techniques to construct compressed sensing schemes that can be “decoded" in sub-linear time. The first technique is based on the well studied code composition method called code concatenation where the “outer" code has strong list recoverability properties. This technique uses only one level of recursion and critically uses the power of list recovery. The second recursi...

متن کامل

Deterministic Construction of RIP Matrices in Compressed Sensing from Constant Weight Codes

The expicit restricted isometry property (RIP) measurement matrices are needed in practical application of compressed sensing in signal processing. RIP matrices from Reed-Solomon codes, BCH codes, orthogonal codes, expander graphs have been proposed and analysised. On the other hand binary constant weight codes have been studied for many years and many optimal or near-optimal small weight and d...

متن کامل

A Block-Wise random sampling approach: Compressed sensing problem

The focus of this paper is to consider the compressed sensing problem. It is stated that the compressed sensing theory, under certain conditions, helps relax the Nyquist sampling theory and takes smaller samples. One of the important tasks in this theory is to carefully design measurement matrix (sampling operator). Most existing methods in the literature attempt to optimize a randomly initiali...

متن کامل

Unified Theory for Recovery of Sparse Signals in a General Transform Domain

Compressed sensing provided a new sampling paradigm for sparse signals. Remarkably, it has been shown that practical algorithms provide robust recovery from noisy linear measurements acquired at a near optimal sample rate. In real-world applications, a signal of interest is typically sparse not in the canonical basis but in a certain transform domain, such as the wavelet or the finite differenc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1304.4071  شماره 

صفحات  -

تاریخ انتشار 2013